
o ' L;SE copy
r 4 SWITCH: A SIMULATION OF -

REPRESENTATIONAL CHANGE IN THE
IN MUTILATED CHECKERBOARD PROBLEM

NTechnical Report AlP - 108
I

Craig A. Kaplan

Department of Psychology
Carnegie Mellon University

Pittsburgh, PA 15213

December 8, 1989

The Artificial Intelligence
and Psychology Project

DTIC
ELECTE

Departments of AUG2 3 O LI
Computer Science and Psychology S E B
Carnegie Mellon University

Learning Research and Development Center
University of Pittsburgh

Approved for public release; distribution unlimited. 9 0 o 9 2 1 0 33

uLnciassiriea

REPORT 000CUNTATION PAGE
A..T W lb. RIVRKI MARKNGS

=nc assiie

,21._wcumrr a aw"71110111111 3. OnITRUTI/AVAILABILITY OF REPORT-
- Approved for public release;

2b.01CLASSA lON4-O-EOU Distribution unlimited

4. PERPOWWG 30GMUATO OPOP NIJMdUR) S. MONITORIN ORGANIZATION REPORT NUMhER~S)

AIP - 108

Ga. NAME OF PERFORMING ORGANIZATION G b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Carnegie Mellon University (Nfapol/able) Computer Sciences Division
I Office of Naval Research (Code 1133)

ft. AOORSS (CRY, State WW~ W Code) 7b. ADDRESS (City, State. and ZIP Code)
Department of Psychology 800 N. Quincy Street
Pittsburgh, PA 15213 Arlington, VA 22217-5000

I&. NAME OF FUN4DING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (It Applicable) NO1-6K07

Same as Monitoring Organizatio I00486K07
B. ADDRIESS (0~y, SUMOW V ZCo*) 10 SOURCEOF FUNDING MNER D40005ub21 /7-4-86

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO0 NO. No. CESSION NO

11. TITLE (hiude Security 081Cla 86Mato)I N/ I NA I NA E NA

Switch: A simulation of representation change in the mutilated checkerboard pro-blem

12. PERSONAL AUTHO(S) Craig A. Kaplan

13a. TYPE OF REPORT 113b. TIME COVERED11.DTOFEPR YMonfyIi AGCUN
Technical IFO enJ.TOZ9 J 8911218 1 25

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SuBJECT TERMS (Continue on reverse of niecenary and ident" by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Cant~nu on reverse if nocenary and identify by block number)

-One of the best ways to study insight is to study problems that require shifts in
representation. One such problem is The Mutilated Checkerboard (MC) problem. This
report presents a brief psychological account of problem solving in the MC domain,
followed by a detailed computer simulation of how change of representation might
actually occur. The computer simulation, SWITCH, was build in the production system
language, Soar. Analysis of how SWITCH works leads to psychological claims about
problem solving strategies, representation, and the mechanism underlying
representational change. . ~

20. DISTRIBUTIONI/AVAILABILTY OF ABSTRACT 121 ABSTRACT SECURITY CLASSIFICATION
fl UPCLASSIFIEOAJNLIMITED 12 SAME AS RPT. 03 TIC USERS

228 NAME Of RESPOINSIBLE INOIVIDUAL 122b TELEPHONE (Includ Area oe I2c OFFICE SYMBOL
Dr. Alan L. Meyrowitz 1(202) 696-4302 r7 -N00014

00 FORM 1473. a MIAR 83 APR edition may be uSed until exIhauniled. SECURITY CLASSIFICATION OF THIS PAGE
Al otlir tditions are ~ot.

Unclassified

SWITCH: A SIMULATION OF
REPRESENTATIONAL CHANGE IN THE

MUTILATED CHECKERBOARD PROBLEM

Technical Report AlP - 108

Craig A. Kaplan

Department of Psychology
Carnegie Mellon University

Pittsburgh, PA 15213

December 8, 1989

This research was supported In part by the Computer Sciences Division, Office of Naval Research, under

contract number N0001 4-86-K-0678, and In part by the Department of Psychology at CMU. Support for

final revisions of the report came from IBM's Human Factors Center at Santa Teresa Laboratories.

Reproduction In whole or part is permitted for any purpose of the United States Government. Approved

for public release; distribution unlimited.

The author Is Indebted to Herb Simon, Davde Steier and Allen Newell for their substantive help with this

project. The author also wishes to thank Elaine Atkinson for her help in formatting the final copy.

Correspondence and requests for reprints should be sent to Herbert A. Simon, Department of

Psychology, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

DTIC
ALECTE
UG2 3 9 U

3

INTRODUCTION

Insight Is that flash of Illumination during which a problem solver exclaims OAhal' and sees (or thinks

1he see) the answer. To have an Insight, one must first have a problem that constitutes something of a

puzzle. It the problem is difficutt for merely technical reasons (e.g. the following of a "on and tedious

algorithm), there is little room for Insight. However, It the problem requires that one or more of Its

elements be thought of In a new way, then Insight seems quite likely.

There Is good evidence that Insight often follows rapidly after the problem solver represents the

problem In a new way (Kaplan & Smon I6 Prws). UnfoVIflmatey, tquite difficult to collect psychological

data at the exact moment of Insight since human subjects awe almost universally silen Jus before the

AHAL . This report presents a computer simulation of how subjects might, change representation and how

that representation might lead to the solution of an Infamous insigh problem, the MutNaed Checkerboard

problem.

DuiatoSpeoi40

Un

4

The Mutilated Checkerboard Problem
The Mutilated Checkerboard problemi (Mc~arthy 1964, Newell 1 966, Kaplan and Simon In press) Is an

Ideal problem for the study of Insight because t solution requires a radical shift In representation. The

problem ft has been presented It In a number of experiments follows:
Subjects are presented with an UzS checkerboard from which the

diagonally opposite corners have been remved (see Vigur. 1). Subjects are
asked to imagine that they have 31 dominos, each of which is capable of
covering two squares if it is placed on the checkerboard either horizontally
or vertically. Diagonal placement is not allowed. The task is to detezuine
if- it is possible to cover the 62 remaining squares using the 31 domino.
A covering must be shown, or the subject must logically prove why
a. coverin is Impossible to produce.

In fact no, covering exists. An Insightful way toprove this fact is to notice that a domnIno must cover a

black and a whit square no matter how It Is placed on the board. Since all 31 dominos must be used If

an area of 62 square Is to be covered, there must be equal numbers Of black and whit squares (each

pair corresponding to one domino placement) for the problem to be possible. However, an examination of

Figure 1 revealha In rernoftn the diagonally opposite comers, we have removed two white squares.

That means twer are two rm blacfs than whltei left on the board, mnd the problem Is imprsslble to

solve.

Task:
Cover the 62 remaining squares using 31 dominos.
Each domino covers two adjacent squares. Or:
Prove logically why such a covering is impossible.

Figure 1: The Classic Mutilated Checkerboard (MC) Problem

S

Elsewhere the Interesting characteistics of the MC problem and of solution attempts by human subjects

wre described and analyzed In considerable detail (Kaplan and Simon In press). However in order to

establish a psychological context for the simulation which follows, I will re-terate some of those

oharacterstics here.

First, the switch in representation from the generic concept of 'square" to the elaborated concepts of

'black square" and "white square" Is at the heart of the Mutilated Checkerboard's difficulty. More

specifically, If we dlstingutsh between time spent exploring various approaches prior to switching

ispreewait on, and time spent on the problem after the switch, it becomes clear that most of the

probler's dificulty sterns from Intialexplradon of fruitless paths prior to the switch. Once the switch has

been mad., the prpof is tfvi for ma"y sruys ects. .

The tch I representation Itself occurs quite rapidly I what one sub)e retrospectlveyc "ed 'a

flash of insight.'. Figure 2 presents the protocol transcripts'from three of tt4 morbariculate subjects

before, during, and after representational change.1 Notice that the total episode - from receiving the hint

or first becoming aware of the Idea of parity (e.g. the alternating color pattern), throtigh the actual iit in

representation (which Is not always clearly delineated), to the generation of a rough proof of Impossibility

- Is fairly brief. Typically, it takes less than one minute. This short time span stands In stark contrast to

the 20 to 45 minutes that subjects typically spend exploring fruitless paths (even though they are given

periodic hints to prod them along!).

'These protocob wre taken from a study (Keplan and Shmon in press) In which several different versions of the Mutilated
Checkrbosid problem were used. The version differed In that sonetine the s uares were lbed with the alternating words
such as 'bIred and "bute Instead of actualy beng different olor. However, the reader should feel free to translate 'bread" and
'butesr "i'k and 'pink"

7

SUBJECT 1 (a BRZAD G BUTTER subject): EXCERPT LASTS: 70 Secs.

1: Just by trial and error I can only find 31 places ... I dunno,
maybe someone else would have counted the spaces and just said that
you could fit 31; but if you try it out on the paper, you can only
fit 30. (pause & distracted chattering)

Z: Keep trying.

1: Maybe it has to do with the words on the page? I haven't tried anything
with that. (pause)

Maybe that's it. Ok, dominos, um, the dominos can only fit ... alright,
the dominos can fit over two squares, and no matter which way you put
it because it cannot go diagonally, it has nto fit over a butter and
a bzead. And because you crossed out two beads, it ha. to leave two
butters left over to it doesn't .. . only 30, it won't fit. Is that
the answer?

SU5JECT 2 (a COLOR subject) . . IXCRT -LASTS: 48 Sacs.

2: There's an even number of squares, so it's possible depending on the
placement... so it has to be the placement.. (p4se)..

2: Row about a different placement? We could try that.
Well, if we place the Xs in different corners, then it'd be really
simple ... other than opposite u How about a black and
a pink Oh, we always have to cover a black and a pink square...
at the same time time Uh, there's no way. to avoid that ... s.

Oh!, There's two black squares covered up and ... since you always
have to cover up a black and a pink square, there's no way you can
do it.

SUBJECT 7 (a COLOR subject- requiring a hint): EXCERPT LASTS: 36 Sacs.

E: What about the color? Can you use color to help you out?

7: There's two pinks next to each other Oh God!! You're taking two black
out? And you would need to take a black and a white out ... a black
and a pink out. (pause)

7: So you're leaving ... OR!!! Jeez! So you're leaving it's short --
how many, you're leaving uhhhh there's more pinks than black,
and in order to complete it you'd have to connect two pinks but you
can't because they are diagonally ... is that getting close? ...
since they are diagonally connected ... and so you' re always gonna
end up with two eztra pinks ... because their mates were taken out.

Figur 2: The AHAI Experence (3 Protocol Excerpts)

8

-.I sugest ta the rapid generalon of the rough proo once sul"cs sch to the epproprts

represaiWOm earrespon to a relatively strWghltglwrd appliation of ft Og.ri knowedge. On the

other hwW, te kd (rW lm Onmin) probleM SON can be intpreed as sarch trouh a large

space of potential cues without powerful heuristics to narrow that search. How subjects eventually arrive

at cues which trigger a switch In representation Is discussed elsewhere (Kaplan and Simon In press). The

purpose of the production system simulation, SWITCH, Is to demonstrat, a set of mecdnlsms sufficient

to explain the actual switch of representation itself, and to explain how t switch might lead to a rapid

solution. SWITCH alms to Illumlnate those processes that ae hkIden In the pause and unspoken words

of the brief verbal protocols In Figure 2.

The SWITCH Simulation

Before plunging ahead with the actual performance of SWITCH, we must establish some basic facts

about Soar - the particular production system chosen for Implementing SWITCH. We also should attend

to the features of Soar that have psychological meaning In SWITCH, and to the knowledge that SWITCH

starts with.

Soar Basics

SWITCH makes primary use only of the fact that Soar Is a production system (i.e. It supports a set of

rules that match against the contents of WM to see If they are Instantiated.) However, Soar Is also an

architecture for general intelligence possessed of a number of special features that make ft unique among

production systems (Laird, Rosenbloom, & Newell 1986).2

Soar's claims that all cognition takes place In problem spaces and that all learning occurs by chunking

would be critical If SWITCH was expanded to model the entire course of solving the MC problem, as

opposed to focussing on the moment of Insight. The psychological claims that are being made at present

however, Include only that: 1) The knowledge that subjects have stored in LTM can be represented by

productions, 2) that the condition side of the productions specify what retrieval cues might access that

knowledge, 3) and that the contents of WM correspond roughly to the contents of the subjects' STM

2A non-exhaustive ist of twgo. features inchides the followbg: A two-phase processing cycle oonsisng of an elsxwelorn phase
dung which productions fire "n paralr and a decision phase durlng which a new goal. problem s"ae, or operator is made par of
the currmntly aetv context, A highly spfed leaN method - chunking, An architecture centered around the notion of proble
"@ees., P. goa generation diven by Impasss reached &lrfny problem soMvg.

9

comnbined with the Infomnit that Is perceptaly sdlein the environment.

What SWITCH Starts With

SWITCH starts with essentially the same Infornation as a subject who has already done a significant

anount of unsuccessful problem solng and has just been given a hint to pay attention to the color of

squares. In addition to modelling the behavior of the subject, however, SWITCH has the task of

modelling the environment in which the subject acts. These two sources of knowledge - knowledge

about the task environment, and about the subject's representation of that environment - have been

carefully distinguished and separated In to SWITCH. Specifically, SWITCH is given the following

information at the start of a simulation run. .

* A model of the real world problem (e.g. representations of squares, dominos, the adjacency
relationships between squares)

* A model of the human subject's represen ion of the real world problem, Including concepts
that have been generated during problem soling, prior to receiving the color hint (e.g. a
concept of ag ehelc square, the proposition that a domino covers two squares)

* An assumed focus of attention (i.e. a 2x2 patch of the board that Is referred to first when the
simulation needs information about real world squares)

" A set of fairly general productions corresponding to well learned inference rules presumably
possessed by adult subjects (e.g. if one proposition appears true based on observation and
the same proposition seems false logically, then a contradiction exists).

" Strategic knowledge (Implemented In domain specific productions for the purpose of this
version of the simulation) corresponding to general strategies such as: "pursue hot Ideas" or
'change to finer grain size upon fallure.'

" A hint (corresponding to that given to subjects) that the parity (e.g. color) of the squares Is
important.

How It works

SWITCH, has three distinct levels of representation. At bottom are the real world viemants (RWEs) --

the simulation's model of the problem elements themselves. Next comes the Internal Representational

Concept (IRC) level which corresponds to the subject's Internal representation of elements In the extemal

world. Finally, there Is the propositional level which corresponds to sequences of IRCs strung together.

While the RWEs are necessary In that the simulation must model the task domain, the way these units

are represented In SWITCH Is Irrelevant to the subject's Internal representation of the problem. Hence

there Is no psychological claim at the RWE level.

3Note: The complet. Sow code for SWITCH, along wfUh a sample execution brc can be found in Appendix A

10

In m,.,wst, the IRCs and Propositions correspond to a human subject's representaton of th problem.

The man psydwWW claim here Is that the representation Is hierarchical in nature. One might think of

the IRas W pesentationl primitives which are combined In different ways to produce various

proposit~ons.

SWITCH's hlerarchlal representation of knowledge provides It with two basic methods of solving

problems: 1) It can try to produce new combinations of the primitives it already has In the hopes that the

new propositions will trigger some useful knowledge that it has already learned, or 2) It can try to

elaborate the IRCs In the hopes that changing the building blocks themselves will eventually result In

useful proposItions.

The best way to get a feel for how the simulation works Is to examine a production and see what It

does. Figure 3 (below) presents the production that performs the actual shift in representation. This

production matches on a hint and then checks to see If any relevant IRCs exist that are unelaborated with

respect to the attribute that the hint refers to. Thus, If the hint says to attend to the color of the squares,

the production may find an IRC corresponding to a generic square - that Is to the concept of

"squareness" without any value for color. At this point, the production looks at the board (the RWEs) to

see If the squares in the real world have color. They do, so the production maps the color from the real

world square to a new IRC that possesses all the previous attributes of the generic square, but now also

specifies the square's color. Thus, by 'analogy' to the real world, the simulation Is able to shift from an

intlal representation of *square', to a representation of "black square" or 'white square.' A similar

production allows the simulation to elaborate old propositions using new IRCs. Thus the proposition "A

domino covers a square and a square" may become 'A domino covers a black square and a white

square. 4

'The detaib of hie poodadloo., named EIboreft-propoeRiono-by..nogy, can be found In Appndx A. Note that knowledge in
this uintiutlon monotonc eo the old prpostion W not acualy transformed, but rather a new proposition b created using th old
propoeon as a nple from wch to w ohe."

11

Production: elaborate-concept-by-analogy

IF: The goal is to prove the problem impossible, AND
The operator is to elaborate a representation, AND
A hint exists saying pay attention to some attribute (e.g. COLOR), AND
Some representational concepts (e.g. the concept of squares) exist
that have no value for the attribute in question (e.g. COLOR), AND
There are some real world referents for the representational concepts
that can be referred to (e.g. the squares which really exist
on the board)

THEN: Map the value of the hinted-at attribute (e.g. COLOR) from the real
world objects (e.g. real squares) to the representational concept of the
objects (e.g. representation of squares).

Figure 3: A Sample Production From SWITCH

12

What It does

An actual trace of the syiniatlon run can be found In AppeWLx A, but I have abstracted the main

sequence of steps and present It below:

1) Got the hint.

2) Decide to elaborate IRCs. (This strategic decision reflects the fact that
the &imlation has been stuck up to this point, and examines the
representational primitives since no progress has been made at the higher
propositional level).

3) Ulaborate concepts by analogy. (The simlation comes up with the new IRCs
of "black square" and "white square').

4) Decide to generate propositions. (Once new XRCs have been generated, the
strategy of "pursue hot ideas" dictates that the simulation check what the
implications of the new conceptual primitives will be at the propositional
level).

5) Elaborate propositions by analogy. (The simalation produces the
proposition that a domino covers a "black square" and a "white square").

6) Xnfer equal numers covered. (The newly generated proposition -- stop 5 --

triggers knowledge that equal numbe:s of the two types of squares must be
covered. Pilot data indicates that subjects have a production similar to
this in general form).

7) Check actual numbers covered. (Since the simulation is working within
the general context of the schema "Proof by contradiction," every new fact
must be checked against reality)

8) Detect a contradiction and exclaim "Impossible!"

9) Decide to generate a reason for impossibility. (Again, the proof context
dictates that the simulation search for a reason for the contradiction)

10) Trace back from contradiction. (The simulation has stored the source of
its proposition -- logically deduced, or empirically observed -- and is
able to recall them).

11) State rough proof. (The simulation uses general knowledge about proofs
to frame the information it has recalled).

The behavior outlined above captures very well the behavior of some subjects from the time they

receive a hint to the time they generate a rough proof, however the majority of subjects deviated In

various ways from the account Just presented. Since an examination of the protocols reveals that the

seeds of these deviations can often be traced to behavior during earlier problem solving, many Individual

differences could probably be captured In a sImulation of the entire problem solving episode. With regard

to change of representation, however, subjects seem remarkably consistent in showing surprise, and then

13

rapid utlzation of the new rep esentetion. Thus, although there w knlvdkk dlerencee In the paths

that subjects take once they have changed representations, there is no need to suppose that there Is any

variabillty In Uw mechanism undertyIng the representaional shift Itself.

Conclusions
SWITCH makes a number of psychological claims. First, there is a general correspondences between

the production system architecOure aNd the psychological notion of refeval from LTM. Moreover, the

infonation 'buNt In" to the simulation corresponds the Information that human subjects could reasonably

be expected to have.

Second, the hierarchical representation scheme (e.g. the levels of RWEs, IRCs, and propositions)

seems psychologicaly valid. That Is, It seems reasonable that representatlom we build of more finely

gralned representational units from the level below. However, It remains to be seen where the

boundaries to these levels might be, and to what degree changes at one level are lkely to affect the

representations at anohler.

Third, the simulation has Incorporated the heuristics of "change grain size upon faliure and 'pursue hot

Ideas.' While there Is some Indication that subjects use these strategies In # Mutilated checkerboard

problem, the generality of these heuristics needs to be tested further.

Fourth, the tallure of the simulation to match the behavior of all of the subjects emphasizes the

Importance of Individual differences In problem solving. Many of these individual differences could

probably be captured in a simulation of the entire problem solving episode (including the many false starts

that typlcally precede Insight).

Finally, the simulation provides a mechanism for changing representations (analogical mappng), and

iustrates how general knowledge, together with a hint, Is sufficient to produce the phenomenon of Insight

In the MC problem.

14

REFERENCES

Kaplan, C.A, and Simon, H.A. (in press) In search of Insight. Cognitive
Psychology.

Laird, J.E., Newell, A., & Rosenbloom, P. S. (1986) Soar: An architecture
for general intelligence. Computer Science Technical Report
CMU-CS-86-171 Pittsburgh: CMU.

McCarlhy, J. (1964) A tough nut for proof procedures. Stanford
Atffical Intelligence Project, Memo No. 16.

Newell, A. (1966) On the representations of problems. Computer Science
Research Review, 18-33. Pittsburgh: CMU.

Simon, H.A. (1978) On the forms of mental representation. In C. Wade Savage
(ed.) Perception and Cognition: Issues In the Foundation of Psychology,
Vol. IX, Minnesota Studies In the Philosophy of Science. Minneapolis,
U. of Minnesota Press.

APPENDIX A: - The Soar Simulation:
Trace and Documented Soar Code

0 g: gOO005
1:1 load-top-goal
1:2 DECIDE problem-space pO0006
1 p: pO0006 proof-by-contradiction
2:3 load-problem-features
2:4 DECIDE state s00007
2 s: s00007
3:5 create-generate-proposition
3:5 create-elaborate-representation
3:5 load-initial-propositions
3:5 load-initial-concepts
3:5 load-hints
3:6 default-prefer-elaborate-representation
3:7 DECIDE operator o00049
3 o: o00049 elaborate-representation
4:8 elaborate-concept-by-analogy
4:8 elaborate-concept-by-analogy
4:9 nevstate*set-up-state-for-copying
4:10 newstate*copy-valid-state-attributes
4:10 nevstate*copy-valid-state-attributes
4:10 newstate*copy-valid-state-attributes
4:11 DECIDE state n00064
4 s: n00064
5:12 default*no-operator-retry
5:12 create-generate-proposition
5:12 create-elaborate-representation
5:13 prefer-generate-propositionl
5:14 DECIDE operator o00065
5 o: o00065 generate-proposition
6:15 elaborate-propositions-by-analogy
6:16 newstate*set-up-state-for-copying
6:16 infer-equal-numbers-covered
6:17 nevstate*copy-valid-state-attributes
6:17 newstate*copy-valid-state-attributes
6:17 newstate*copy-valid-state-attributes
6:17 newstate*copy-valid-state-attributes
6:17 nevstate*copy-valid-state-attributes
6:17 make-count-proposition
6:18 contradiction-found
The problem is impossiblel
6:19 DECIDE state n00068
6 s: n00068
7:20 default*rto-operator-retry
7:20 create-generate-proposition
7:20 create-elaborate-representation
7:20 create-find-reason
7:21 prefer-generate-proposition2
7:21 prefer-generate-proposition1
7:21 prefer-find-reason
7:22 DECIDE operator o00072
7 o: o00072 find-reason
8:23 trace-back-contradiction
For the problem to be possible, it must be true that
number black square equal number white square
since domino covers black square and white square
But, it is false that
number black square equal number white square
by empirical observation. Therefore, the
problem is impossible.
"End -- Explicit Halt"

Mutilated Checkerboard Problem -- Simulation in SOAR 4.4 *
;* *

Craig Kaplan *
Carnegie-Mellon University *
MARCH 9, 1987 *

;* *

;* This program simulates the behavior of subjects from the time *
;* that they receive the COLOR hint to the time that they generate *
;* a rough proof of the problem's impossibility. *

INTIALIZATION PRODUCTIONS

(sp load-top-goal

;; Establish the top level goal of proving the problem impossible as well
;; as the method of proof by contradiction. The name of the problem-
;; space is somewhat arbitrary since its states really represent the
;; ever-changing WM-representation.

(goal <g> -problem-space undecided - "supergoal)

(goal <g> ^name prove-impossible)
(problem-space <p> ^name proof-by-contradiction)
(preference <p> ^role problem-space ^value acceptable ^goal <g>)

(sp load-problem-features

;; Load a set of Real World Elements (RWEs)
;; corresponding to the physical squares, dominos, and adjacent-squares.
;; These elements correspond to the problem-itself as opposed to a human's

representation of the problem.

(goal <g> "problem-space <p> ^state undecided - 'supergoal)
(problem-space <p> ^name proof-by-contradiction)

(preference <s> ^role state ^value acceptable ^problem-space <p>
"state undecided)

(state <s> ^rw <rv> "ks <ks>)
(rye <rwl> 'name domino ^shape rectangle ^area 2 "number-of 1

^function coverer)
(rye <rw2> ^name square ^shape square ^area 1 "number-of 1 'position 1

"color-of black -function coveree ^status removed)
(rwe <rw3> 'name square ^shape square ^area 1 "number-of 1 ^position 2

"color-of white ^function coveree ^status present)
(rwe <rw4> 'name square ^shape square *area 1 "number-of 1 ^position 3

"color-of black ^function coveree ^status present)
(rwe <rw5> ^name square ^shape square ^area 1 ^number-of 1 'position 4

"color-of white 'function coveree "status present)
(rwe <rw6> ^name square ^shape square ^area 1 ^number-of 1 'position 5

color-of black ^function coveree ^status present)
(rwe <rw7> ^name square ^shape square ^area 1 "number-of 1 'position 6

.color-of white ^function coveree 'status present)
(rye <rw8> 'name square ^shape square ^area 1 "number-of 1 *position 7

C~ J 446

color-of black -function coveree 'status present)
(rye <rv9> 'name square ^shape square ^area 1 'number-of 1 ^position 8

"color-of white ^function coveree 'status present)
(rye <rwlO> ^name square ^shape square 'area 1 'number-of 1 ̂ position

9 'color-of black 'function coveree ^status present)
(rye <rvll> 'name square ^shape square 'area 1 'number-of 1 ̂ position

10 color-of white ^function coveree ^status present)
(rye <rvl2> ^name square ^shape square 'area 1 'number-of 1 ^position

11 ^color-of black ^function coveree .status present)
(rwe <rwl3> "name square 'shape square ^area 1 'number-of 1 'position

12 'color-of white 'function coveree 'status present)
(rwe <rwl4> ^name square ^shape square 'area 1 'number-of 1 ^position

13 'color-of black ^function coveree 'status removed)
(rwe <rvl5> ^name square ^shape square ^area 1 number-of 1 'position

14 'color-of white ^function coveree ^status present)
(rwe <rwl6> ^name square ^shape square 'area 1 'number-of 1 'position

15 'color-of black ^function coveree 'status present)
(rwe <rwl7> ^name square ^shape square 'area 1 'number-of 1 ^position

16 'color-of white ^function coveree ^status present)
(rwe <rwl9> ^name adjacent-squares 'shape square 'number-of 2 'posl 2

"pos2 3)
(rwe <rw20> 'name adjacent-squares ^shape square 'number-of 2 'posl 2.pos2 7)
(rwe <rv2l> ^name adjacent-squares ^shape square 'number-of 2 'posl 7

.pos2 8)
(rwe <rv22> ^name adjacent-squares ^shape square 'number-of 2 posl 8"pos2 9)
(rwe <rw23> ^name adjacent-squares 'shape square 'number-of 2 'posl 9"pos2 10)
(rwe <rw24> 'name adjacent-squares 'shape square 'number-of 2 'posl 9"pos2 16)
(rwe <rw25> 'name adjacent-squares 'shape square 'number-of 2 'posl 16"pos2 15)
(rwe <rw26> 'name adjacent-squares 'shape square 'number-of 2 'posl 10.pos2 15)
(rwe <rw27> 'name adjacent-squares 'shape square 'number-of 2 'posl 7.pos2 10)
(rwe <rw28> 'name adjacent-squares 'shape square 'number-of 2 'posl 3

.pos2 6)
(rwe <rw29> 'name adjacent-squares 'shape square 'number-of 2 'posl 6

.pos2 7)
(rwe <rw30> 'name adjacent-squares 'shape square 'number-of 2 'posl 6

.pos2 11)
(rwe <rw3l> 'name adjacent-squares ^shape square 'number-of 2 'posl 10

.pos2 11)
(rye <rw32> ^name adjacent-squares 'shape square 'number-of 2 'posl 15

"pos2 14)
(rwe <rw33> 'name adjacent-squares 'shape square 'number-of 2 'posl 11

"pos2 14)
(rye <rw34> 'name adjacent-squares 'shape square 'number-of 2 'posl 11

.pos2 12)
(rye <rw35> 'name adjacent-squares 'shape square 'number-of 2 'posl 5

.pos2 12)
(rwe <rw36> 'name adjacent-squares ^shape square 'number-of 2 'posl 5

pos2 6)
(rwe <rw37> 'name adjacent-squares ^shape square 'number-of 2 'posl 3

"pos2 4)
(rwe <rw38> 'name adjacent-squares ^shape square 'number-of 2 'posl 4

"pos2 5)
(rv <rw> 'rwe <rwl> <rv2> <rw3> <rw4> <rv5> <rw6> <rv7> <rv8> <rv9>

ti* CJ 4-i

<rvlO> <rwll> <rvl2> <rwl3> <rwl4> <rvl5> <rvl6> <rwl7>
<rwl8> <rvl9> <rw20> <rw2l> <rw22> <rw23> <rw24> <rw25>
<rw26> <rw27> <rv28> <rw29> <rv30> <rv3l> <rw32> <rv33>
<rw34> <rv35> <rv36> <rw37> <rw38>)

)

(sp load-hints

; Load the "color-hint" to pay attention to the color of the squares,
; and the "insight-hint" which alerts the Ss that there is a "trick

way of looking at the problem."

(goal <g> ^problem-space <p> ^state <s> ^operator undecided)
(problem-space <p> ^name proof-by-contradiction)
(state <s> ^ks <ks>)
(ks <ks> -^hint)

(hint <hl> ^name color-of-squares-hint ^attend-to-name square
"attend-to-attribute color-of)

(hint <h2> ^name insight-hint)
(ks <ks> 'hint <hl> <h2>)

(sp load-initial-concepts

;; Create Internal Representational Concepts (IRCs) corresponding to the
;; concepts a subject is likely to have acquired during the course of
;; problem solving through the point when the subject gets the COLOR hint.
;; The concept "sample" represents the fact that subjects usually choose
;; to attend to a couple of specific squares rather than the entire board
;; at once. Future simulations may model the sampling processes dynamically.
;; NOTE: At a later stage, the simulation will actually derive these IRCs
;; from RWEs using Concept Formation Rules. (Also, including "number black
;; square" and "number white square" here is a temporary kludge, as it is
;; almost certain that these concepts would be induced AFTER, not before
;, the COLOR hint. We need to find an elegant way for SOAR to count squares.)

(goal <g> ^problem-space <p> ^state <s> ^operator undecided)
(problem-space <p> ^name proof-by-contradiction)
(state <s> 'ks <ks>)
(ks <ks> -^irc)

(irc <irO> ^name square concept ^shape square ^area 1 ̂ number-of 1
"position nil "color-of nil ^function coveree ^status nil)

(irc <ir1> ^name adjacent-squares concept ^shape square square 'number-of 2
"area 2 ^posl 3 'pos2 4 ^function coveree)

(irc <ir2> ^name domino concept 'shape rectangle ^area 2
^function coverer)

(irc <ir3> 'name number black square ^number 6)
(irc <ir4> ^name number white square ^number 8)
(irc <ir6> ^name sample ^shape square 'number-of 1 ̂ position 3

^adjacent-to 4 ^salience 1st)
(irc <ir7> ^name sample ^shape square 'number-4f 1 ..pqsition 4

"adjacent-to 3 ^salience 2nd)
(sf <sfl> ^name salient-feature ^attend-to-name square

.attend-to-attribute number-of)
(ks <ks> "irc <irO> <irl> <ir2> <ir3> <ir4> <ir5> <ir6> <ir7>

sf <sfl>)

.R%4 J !0f

(sp load-initial-propositions

Loads propositions that would have been inferred by subjects prior to
;; receiving the COLOR hint. Note: This is a minimal, not exclusive list.

(goal <g> 'problem-space <p> 'state <s> ^operator undecided)
(problem-space <p> ^name proof-by-contradiction)
(state <s> ^ks <ks>)
(ks <ks> -'prop)

(ks <ks> ^prop <prl>)
(prop <prl> "terml domino "rel covers ^term2 square ^term3 square)

SEARCH CONTROL PRODUCTIONS -- PROOF-BY-CONTRADICTION PROBLEM SPACE

(sp create-elaborate-representation

;; Create one of the operators that we assume subjects have whenever
;; they have had difficulty solving problems with the intial representation.

(goal <g> ^name prove-impossible ^problem-space <p> ^state <s>
.operator undecided)

(problem-space <p> 'name proof-by-contradiction)
(state <s> 'rw <rw> "ks <ks>)

(operator <o> ^name elaborate-representation)
(preference <o> -role operator ^value acceptable ^goal <g>

problem-space <p> ^state <s>)

(sp create-generate-proposition

;; Create one of the operators that we assume subjects have whenever
they are reasoning with propositions.

(goal <g> ^name prove-impossible 'problem-space <p> ^state <s>
"operator undecided)

(problem-space <p> ^name proof-by-contradlction)
(state <s> "rw <rw> 'ks <ks>)

(operator <o> ^name generate-proposition)
(preference <o> ^role operator ^value acceptable ^goal <g>

problem-space <p> ^state <s>)

(sp default-prefer-elaborate-representation

;; If no new elaborations or propositions have
;; been generated, and the insight hint has been given,
,, then try to elaborate the basic representation.

(goal <g> ^problem-space <p> 'state <s> 'operator undecided)
(problem-space <p> ^name proof.-by-contradiction)
(state <s> 'ks <ks> -'newirc -'newprop)
(ks <ks> 'hint <h2>)

(hint <h2> 'name insight-hint)

(operator 'name elaborate-representation)
(operator <o2> ^name generate-proposition)
(preference 'role operator ^value acceptable 'goal <g>

"problem-space <p> 'state <s>)
(preference <o2> ^role operator 'value acceptable 'goal <g>

problem-space <p> ^state <s>)

(preference ^role operator 'value better 'reference <o2> ^goal <g>
problem-space <p> ^state <s>)

(sp prefer-generate-propositionl

;; If new elaborations have been made

;; then try to generate propositions.

(goal <g> ^problem-space <p> ^state <s> 'operator undecided)
(problem-space <p> ^name proof-by-contradiction)
(state <s> 'ks <ks> ^newirc)
(operator 'name elaborate-representation)
(operator <o2> ^name generate-proposition)
(preference ^role operator ^value acceptable ^goal <g>

"problem-space <p> "state <s>)
(preference <o2> ^role operator 'value acceptable ^goal <g>

problem-space <p> ^state <s>)

(preference <o2> 'role operator 'value better 'reference 'goal <g>
"problem-space <p> 'state <s>)

(state <s> 'change <change>)
(delete <change> 'newirc)

(sp prefer-generate-proposition2

;; If new propositions have been recently generated
;; then try to generate some more propositions.

(goal <g> 'problem-space <p> 'state <s> 'operator undecided)
(problem-space <p> ^name proof-by-contradiction)
(state <s> 'ks <ks> ^newprop)
(operator 'name elaborate-representation)
(operator <o2> 'name generate-proposition)
(preference 'role operator 'value acceptable 'goal <g>

"problem-space <p> 'state <s>)
(preference <o2> 'role operator 'value acceptable 'goal <g>

problem-space <p> 'state <s>)

(state <s> 'change <change>)
(delete <change> 'newprop)
(preference <o2> 'role operator 'value better 'reference 'goal <g>

problem-space <p> ^state <s>)

CONCEPT FORMATION RULES

(sp elaborate-concept-by-analogy

The hint <h> specifies what concept <irl> to look at. The hint also
specifies what property of the concept <focus> to look at.

;; If that property has the value nil, then create a new concept <ir2>
;, that is the same as the old concept in all respects (i.e. analogous)
;, except that the value of nil in the attribute of interest is replaced
;; with a value <valO> found by looking at relevant features
;; of the board <rwl>. Rather than examine every matching concept (square)
,; on the board, a representative square <ir2> is chosen. (We assume that

the subject chooses at least two -- one of each color)

(goal <g> 'problem-space <p> ^state <s> 'operator <o>)
(state <s> ^ks <ks> 'rw <rw>)
(ks <ks> ^hint <h> ^irc <irl> <ir2>)
(rw <rw> 'rwe <rwl>)
(problem-space <p> ^name proof-by-contradiction)
(operator <o> ^name elaborate-representation)
(hint <h> 'attend-to-name <name> 'attend-to-attribute <focus>)
(irc <irl> ^name <name> ^<focus> nil ^shape <shape> 'number-of <nn>

.area <a> ^position <pos> ^function <func> 'status <stat>)
(irc <ir2> 'name sample 'shape <name> 'number-of <nn> 'position <pl>"salience << 1st 2nd >>)
(rwe <rwl> ^name <name> ^<focus> {<valO> <> nil) ^position <pl>)

(operator <o> ^newstateneeded)
(state <s> ^newirc)
(ks <ks> 'irc <ir3>)
(irc <ir3> 'name <valO> <name> concept '<focus> <valO> 'shape <shape>

number-of <nn> 'area <a> 'position <pos> 'function <func>
status <stat>)

)

RULES FOR CREATING PROPOSITIONS

(sp elaborate-propositions-by-analogy

;; The hint <h> specifies which concept <name> and which property <attl>
;; of that concept is of current interest. Any proposition <pr> that mentions
;; the concept as being covered is chosen to be elaborated. In order to
;; specify which features of the board <rwl>&<rw2> should be used as the
;; basis for the elaboration, a pair of representative-coverees <irl>
;; which indicate the location of two specific instances <pl>&<p2> of

the concept are chosen. (Note: in this case "concept" is equivalent
;; "square(s)") The interesting properties of the concept (e.g. color-of
;; the squares) are observed in the two specific instances and then used
;; to elaborate the old proposition. The new propositions created are
;; exactly the same as (analogous to) the old proposition except that
;; the concepts are now modified according to the observed properties

(e.g. "black square" or "white square" instead of simply "square").

(goal <g> 'problem-space <p> 'state <s> 'operator <o>)
(problem-space <p> ^name proof-by-contradiction)
(state <s> 'ks <ks> 'rw <rw>)
(operator <o> 'name generate-proposition)
(ks <ks> 'hint <h> 'prop <pr> 'irc <irl>)

.;M i $6

(rw <rw> rwe <rwl> <rw2>)

(hint <h> 'attend-to-name <name> ^attend-to-attribute <attl>)
(prop <pr> ^terml <tl> 'rel covers 'term2 <name> "term3 <name>)
(irc <irl> 'name sample ^shape <name> ^position <pl>

"adjacent-to <p2> ^salience 1st)
(rwe <rwl> ^shape <name> ^position <pl> <attl> <cl>)
(rwe <rw2> ^shape <name> ^position <p2> "<attl> <c2>)

(operator <o> "newstateneeded)
(state <s> "newprop)
(prop <pr> "terml domino ^rel covers "term2 <cl> square

term3 <c2> square)
(ks <ks> 'prop <pr>)

(sp infer-equal-numbers-covered

;; Any coverer that must covers two coverees implies equal numbers of the
;; coverees.

(goal <g> 'problem-space <p> 'state <s> ^operator <o>)
(problem-space <p> ^name proof-by-contradiction)
(state <s> ^ks <ks> ^rw <rw>)
(operator <o> ^name generate-proposition)
(ks <ks> 'prop <pr> "sf <sfl>)
(sf <sfl> "attend-to-name <item> "attend-to-attrlbute number-of)
(prop <pr> 'terml <coverer> "rel covers ^term2 (<cl> <> <item>) <item>

"term3 (<c2> <> <cl> <> <item>) <item>)

(operator <o> ^newstateneeded)
(state <s> ^newprop)
(prop <p2> ^source logical <pr> ^terml number <cl> <item> "rel equal

"term2 number <c2> <item> ^truth true)
(ks <ks> ^prop <p2>)

(sp make-count-proposition

,, If the number of two types of squares are not equal, state
;; this fact as an empirical proposition. (NOTE: Actually in place
;; of this production, future versions of the simulation will
;; probably instantiate elaborate-concept-by-analogy a 2nd time
;; to notice the color of the Xed squares. Then an inference will
;; be made that there cannot be equal numbers of blacks and whites
;; since two blacks were removed. Human subjects almost always follow
;; this sequence.)

(goal <g> "problem-space <p> ^state <s> ^operator <o>)
(problem-space <p> ^name proof-by-contradiction)
(state <s> 'ks <ks> 'rw <rw>)
(ks <ks> ^hint <h> 'prop <pr> 'irc <irl> <ir2>)
(operator <o> ^name generate-proposition)
(hint <h> "attend-to-name <item>) .
(prop <pr> -'source empirical "term1 number (<c1> <> <item>

<> number) <item> "rel <any-relation>
"term2 number (<c2> <item> <> number) <item?)

(irc <irl> 'name number <cl> <item> ^number <nl>)
(irc <ir2> 'name number <c2> <item> 'number (<n2> <> <nl>)

, . ,.9 'J .;r

A4-9
(operator <o> 'nevstateneeded)
(state <s> ^newprop)
(prop <pr> ^source empirical ^terml number <cl> <item> ^rel equal

.term2 number <c2> <item> ^truth false)
(ks <ks> ^prop <pr>)

(sp contradiction-found

;; Check for identical propositions with opposite truth values.
Scope of this production is narrowed somewhat by making use of the hint
and by restricting examination to those propositions that deal with

;; the number of types of items.
Subjects typically exclaim that the problem is impossible as soon as
they detect a contradiction.

(goal <g> 'problem-space <p> ^state <s> 'operator <o>)
(problem-space <p> 'name proof-by-contradiction)
(state <s> ^ks <ks> ^rw <rw>)
(ks <ks> ^hint <h> 'prop <prl> <pr2> -'contradiction? yes)
(hint <h> "attend-to-name <item>)
(prop <prl> ^terml number (<c1> <> <item> <> number) <item> ^rel <rel>
.term2 number (<c2> <> <item> <> number) <item> ^truth true)

(prop <pr2> "terml number (<ci> <> <item> <> number) <item> "rel <rel>
term2 number {<c2> <> <item> <> number) <item> 'truth false)

(operator <o> "newstateneeded)
(ks <ks> ^contradiction? yes)
(writel (crlf) I The problem is impossible!l)

(sp create-find-reason

(goal <g> ^problem-space <p> ^state <s> 'operator undecided)
(problem-space <p> ^name proof-by-contradiction)
(state <s> "ks <ks> "rw <rw>)
(ks <ks> ^contradiction? yes)

(operator ^name find-reason)
(preference ^role operator 'value acceptable ^goal <g>

problem-space <p> ^state <s>)

(sp prefer-find-reason

;; If a contradiction has been detected then it becomes
the highest priority to explain it, given that the subject

;; is seraching for a proof by contradiction.

(goal <g> "problem-space <p> 'state <s> ^operator undecided)
(problem-space <p> name proof-by-contradiction)
(state <s> "ks <ks> ^rw <rw>)
(ks <ks> 'contradiction? yes)
(preference ^role operator ^value acceptable 'goal <g>

"problem-space <p> ^state <s>)
(operator 'name find-reason)

(preference 'role operator ^value best 'goal <g>

A-1o
problem-space <p> ^state <s>)

(sp trace-back-contradiction

;; Retrieve the contradiction and state the logically-inferred proposition
,; and its premises as support for concluding impossibility since they
,, contradicted by empirical observation.

(goal <g> ^problem-space <p> ^state <s> ^operator <o>)
(problem-space <p> ^name proof-by-contradiction)
(state <s> "ks <ks> ^rw <rw>)
(operator <o> ^name find-reason)
(ks <ks> ^hint <h> ^prop <prl> <pr2> <pr3>)
(hint <h> "attend-to-name <item>)
(prop <prl> 'source logical {<pr3> <> logical <> empirical <> nil)

.terml number (<cl> <> number <> <item>) <item> "rel <rel>
"term2 number [<c2> <> number <> <item>) <item>
"truth (<truthl> true))

(prop <pr2> ^source empirical 'terml number (<cl> <> number
<> <item>) <item> "rel <rel> 'term2 number
(<c2> <> number <> <item>) <item> ^truth (<truth2> false))

(prop <pr3> "terml <t> -rel <r> term2 [<ccl> <> <item>) <item>
term3 (<cc2> <> <item>) <item>)

(writel (crlf) IFor the problem to be possible, it must bel
<truthl> Ithati)

(writel (crlf) number <cl> <item> <rel> number <c2> <item>)
(writel (crlf) Isincel <t> <r> <ccl> <item> landl <cc2> <item> 1.1)
(writel (crlf) IBut, it isl <truth2> Ithatl)
(writel (crlf) number <cl> <item> <rel> number <c2> <item>)
(writel (crlf) iby empirical observation. Therefore, thel)
(writel (crlf) 1problem is impossible.)
(halt)

David Steier's state copying productions

Kinds of state modifications needed for operator implementation:
1) Adding an attribute to the state
2) Deleting an attribute from the state
3) Replacing the value of an existing attribute on the state

with another value

;; Responses in the current system:
1) create a new state, copy over all the attributes,

and add the new one
2) create a new state, and copy over all the attributes of

the old state except for the one being deleted
3) create a new state and copy over the attributes

of the old state except for the one being replaced,
add the replacing attribute

;; The productions fire when the change augmentations .aveI.een.
added to the current operator.

"NEWSTATENEEDED" HACK needed so this production will fire once
per operator. I really want to say that a new s.tate is required

;; if one or more changes are needed. The augmentation to the operator
,, also lets state adds work correctly.

.'., . 4 66

,Set up new state and make sure the name is not copied
(sp newstate*set-up-state-for-copying

(goal <g> ^problem-space <p> -state <s> ^operator <q>)
(operator <q> ^newstateneeded)

(state <ns> 'dummy-attribute dummy)
(preference <ns> ^goal <g> ^problem-space <p> -state <s>

operator <q> ^role state 'value acceptable)

,Don't copy the name attribute
(sp nevstate*copy-valid-state-attributes

(goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(operator <q> ^nevstateneeded)
-(operator <q> ^change <change>)

(delete <change> ^<att> <val>))
-(operator <q> ^change <change>)

(replace <change> ^<att> <val>)}
(state <s> (C<att> 0> name) <val>)
(preference <ns> ^goal <g> ^problem-space <p> 'state <s>

role state ^operator <q> ^value acceptable)
(state <ns> -^<att> <val>)

(state <ns> ^<att> <val>)

(sp newstate-do-add-to-nevstate-if-needed
(goal <g> ^problem-space <p> 'operator <q> ^state <s>)
(operator <q> ^change <a>)
(add <a> ^<att> <val>)
(preference <ins> ^goal <g> ^problem-space <p> ^state <s>

operator <q> ^role state ^value acceptable)
(state <ns> -^<att> <val>)

(state <ns> '<att> <val>)

(sp nevstate-do-replace-to-nevstate-if-needed
(goal <g> ^problem-space <p> 'operator <q> ^state <s>)
(operator <q> ^change <r>)
(replace <r> i<att> 0> by) ^by <nevval>)
(preference <ns> ^goal <g> 'problem-space <p> ^state <s>

role state ^value acceptable)
(state <ins> -^<att> <newval>)

(sae)s <at nwa>

